Friday 26 January 2018

 Increased brain acidity in psychiatric disorders



Your body’s acid/alkaline homeostasis, or maintenance of an adequate pH balance in tissues and organs, is important for good health. An imbalance in pH, particularly a shift toward acidity, is associated with various clinical conditions, such as a decreased cardiovascular output, respiratory distress, and renal failure. But is pH also associated with psychiatric disorders?

Researchers at the Institute for Comprehensive Medical Science at Fujita Health University in Japan, along with colleagues from eight other institutions, have identified decreased pH levels in the brains of five different mouse models of mental disorders, including models of schizophrenia, bipolar disorder, and autism spectrum disorder. This decrease in pH likely reflects an underlying pathophysiology in the brain associated with these mental disorders, according to the study published August 4th in the journal Neuropsychopharmacology.

While post-mortem studies have shown that the brains of patients with the abovementioned mental disorders tend to have a lower pH than those of controls, this phenomenon has been considered to be the result of secondary factors associated with the diseases rather than a primary feature of the diseases themselves. Secondary factors that confound the observation of a decreased brain pH level include antipsychotic treatments and agonal experiences associated with these disorders.

Dr. Miyakawa and his colleagues performed a meta-analysis of existing datasets from ten studies to investigate the pH level of postmortem brains from patients with schizophrenia and bipolar disorder. They observed that patients with schizophrenia and bipolar disorder exhibited significantly lower brain pH levels than control participants, even when potential confounding factors were considered (i.e., postmortem interval, age at death, and history of antipsychotic use). “These factors may not be major factors causing a decrease in pH in the postmortem brains of patients with schizophrenia and bipolar disorder,” Miyakawa explains.

The researchers then conducted a systematic investigation of brain pH using five mouse models of psychiatric disorders, including models for schizophrenia, bipolar disorder, and autism spectrum disorders. All of the mice used in the study were drug-naive, with equivalent agonal states, postmortem intervals, and ages within each strain. The analyses revealed that in all five mouse models, brain pH was significantly lower than that in the corresponding controls. In addition, the levels of lactate were also elevated in the brains of the model mice, and a significant negative correlation was found between brain pH and lactate levels. The increase in lactate may explain the decreased brain pH levels, as lactate is known to act as a strong acid.

Miyakawa suggests that, “while it is technically impossible to completely exclude confounding factors in human studies, our findings in mouse models strongly support the notion that decreased pH associated with increased lactate levels reflects an underlying pathophysiology, rather than a mere artifact, in at least a subgroup of patients with these mental disorders.”

Changes in the brain pH level have been considered an artifact, therefore substantial effort has been made to match the tissue pH among study participants and to control the effect of pH on molecular changes in the postmortem brain. However, given that decreased brain pH is a pathophysiological trait of psychiatric disorders, these efforts could have unwittingly obscured the specific pathophysiological signatures that are potentially associated with changes in pH, such as neuronal hyper-excitation and inflammation, both of which have been implicated in the etiology of psychiatric disorders. Therefore, the present study highlighting that decreased brain pH is a shared endophenotype of psychiatric disorders has significant implications on the entire field of studies on the pathophysiology of mental disorders.

This research raises new questions about changes in brain pH. For example, what are the mechanisms through which lactate is increased and pH is decreased? Are specific brain regions responsible for the decrease in pH? Is there functional significance to the decrease in brain pH observed in psychiatric disorders, and if so, is it a cause or result of the onset of the disorder? Further studies are needed to address these issues.

Source:
https://www.eurekalert.org/pub_releases/2017-08/fhu-iba080717.php

Journal article:
https://www.nature.com/articles/npp2017167

#psychiatricdisorders #phbalance #schizophrenia #bipolardisorder

SENSATIONAL CELLS

THE HUMAN CELL ATLAS IS INITIALLY
FOCUSED ON FIVE TYPES OF CELL…


BRAIN

The brain is probably the most complex organ in                   
the body, made up of more than 86 billion nerve                     
cells (neurons). By mapping all the patterns of                       
gene activity in different brain cells, researchers                     
hope to understand how neurons wire up and                         
communicate, and what goes wrong in psychiatric                 
and neuro degenerative illnesses.                                             



IMMUNE SYSTEM


There are hundreds of types of cell in the immune
system alone, each with distinct roles in spotting
and responding to infections or disease. Analysing
each cell type will reveal the changes that happen
as the immune system fires into action, and will
shed light on autoimmune conditions and
allergies.


EPITHELIAL CELLS

Epithelial cells are one of the most versatile cell
types. They make the linings of our organs,
ranging from the tubes of the gut to the delicate air
sacs of the lungs. Establishing how epithelial cells
carry out such a diverse range of roles will explain
how organs grow and are affected by diseases
such as cancer


PLACENTA AND FOETUS

Studying these tissues will reveal how we grow
and develop in the womb, and how a healthy
placenta develops to provide oxygen and
nutrients. This will give us vital clues for
understanding what has gone wrong in babies
who are born with developmental disorders, or
when a pregnancy ends in miscarriage or stillbirth.

CANCER

By analysing gene activity in single cancer cells,
researchers hope to identify the changes that
trigger the growth and spread of tumours. They
are also searching for clues to explain how these
rogue cells can develop resistance to therapy, with
the aim of finding ways to prevent the disease
coming back again after treatment.


Sunday 21 January 2018

Why hummingbirds are so big-hearted


BIRDS fly better if they have big hearts. The best flyers, like hovering hummingbirds, have the largest. When a hummingbird hovers, it beats its wings in a figure-of-eight pattern up to 80 times per second, much like a helicopter. This is energetically costly, says Roberto Nespolo at the Austral University of Chile. But most birds don’t fly this way. Some flap their wings up and down, like geese. Others, like eagles, soar on updraughts of hot air, while some ground-dwellers, like pheasants, undergo only short bouts of flapping.
In theory, birds using more costly forms of flying should have larger hearts. The bigger the heart, the more blood a bird can pump to its flight muscles. To find out, Nespolo and his team grouped 915 bird species by flight type and compared their hearts. Hummingbirds had the biggest hearts for their body size, at 3 per cent of their mass. In contrast, a pelican’s heart is just 0.8 per cent of its mass. The sizes of birds’ hearts matched their flight mode. The optimal size for hovering was 2.43 times that for flapping and 3 times higher than gliding (Journal of Experimental Biology, DOI:10.1242/jeb.162693). It is surprising that flapping fliers had similar hearts to gliders, says Rebecca Kimball at the University of Florida. “I would have assumed that flapping flight would have required a lot more energy.”

-----NEW SCIENTIST DECEMBER 2018

Saturday 20 January 2018

COULD JUPITER BECOME A STAR?
Jupiter is often called a ‘failed star’ because, although it is mostly hydrogen like most normal stars, it is not massive enough to commence thermonuclear reactions in its core and thus become a ‘real star’. But the term ‘failed star’ is a bit of a misnomer. Theoretically, any object at all could be made into a star, simply by adding enough matter to it. With enough mass, the internal pressure and temperature of the object will reach the threshold needed to start thermonuclear reactions. That threshold is the least for the simplest element, hydrogen. In order to turn Jupiter into a star like the Sun, for example, you would have to add about 1,000 times the mass of Jupiter. But, to make a cooler ‘red dwarf’, you would only need to add about 80 Jupiter masses. Although the exact numbers are still a bit uncertain, it is possible that a ‘brown dwarf’ could still form (in which deuterium, rather than hydrogen, fuses in the star’s core) with only about 13 Jupiter masses. So, Jupiter cannot and will not spontaneously become a star, but, if a minimum of 13 extra Jupiter-mass objects happen to collide with
it, there is a chance it will.